If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-19x-23=0
a = 2; b = -19; c = -23;
Δ = b2-4ac
Δ = -192-4·2·(-23)
Δ = 545
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{545}}{2*2}=\frac{19-\sqrt{545}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{545}}{2*2}=\frac{19+\sqrt{545}}{4} $
| 2x+5x-4=18 | | 1/4/1/3=n/5/6 | | 1/2/1/3=n/1/4 | | 8n/2=36/9 | | 2x4–11x3+11x2–11x–9=0 | | -x^2+12x=9 | | x*x+6=30 | | 5.1+2y+1.2=1.2=-2+2y+8.3 | | 2x/3-4=4 | | d/7+3=-2 | | -2(x+1)=2(x-+) | | x+3/8=2/x-3 | | 3(x–4)+2x=8 | | (5x+4)(5x+6)=0 | | (5x-4)(5x+6)=0 | | 3.5=0.5x-2 | | 2x+3=8x-11=5x+4 | | x-0.3x=200 | | 6y^2-5y-50=0 | | x^5+3x^4-4x^3-2x^2-12x-16=0 | | 3+3/2x+4=4x-(-5/2x) | | 4x2x+15=6x2x-41 | | x1x+15=6x1x-41 | | 8x1x+15=6x1x-41 | | x/2=172 | | 1xx13-72=760 | | 5(6x+21)=225 | | xx13-72=760 | | 2(7y-16)=10 | | -524=4(15a-11) | | 11c-78=5c+48 | | -7(w-78)=-91 |